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Abstract

We propose to leverage a continuous and large stream of

unlabeled data in the wild to alleviate catastrophic forget-

ting in class-incremental learning. Our experimental results

on CIFAR and ImageNet datasets demonstrate the superior-

ity of the proposed methods over prior methods: compared

to the state-of-the-art method, our proposed method shows

up to 14.9% higher accuracy and 45.9% less forgetting.

1. Introduction

Class-incremental learning [17] simulates real-world

scenarios where the number of tasks continues to grow; the

entire tasks are given at once but as a sequence.1 Deep neu-

ral networks (DNNs) tend to forget previous tasks easily

when learning new tasks, which is a phenomenon called

catastrophic forgetting [4, 15]. The main reason of catas-

trophic forgetting is the limited resources for scalability: all

training data of previous tasks cannot be stored in a limited

size of memory as the number of tasks increases. As we

live with a continuous and large stream of data, a number of

unlabeled data is easily obtainable on the fly or transiently,

for example, by data mining on social media [14] and web

data [8]. Motivated by this, we propose to leverage such a

large stream of unlabeled external data.

Contribution. Under the new class-incremental setup, our

contribution is three-fold (see Figure 1 for an overview):

A. We propose a new training loss, termed global distil-

lation, which utilizes data to distill the knowledge of

previous tasks effectively.

B. We design a 3-step learning scheme to improve the ef-

fectiveness of global distillation: (i) training a teacher

specialized for the current task, (ii) training a model

by distilling the knowledge of the previous model and

the teacher learned in (i), and (iii) fine-tuning to avoid

overfitting to the current task.

C. We propose a sampling scheme with a confidence-

calibrated model to effectively leverage a large stream

of unlabeled data.

1In class-incremental learning, a set of classes is given in each task, and

we aim to classify data in any class learned so far without task boundaries.

Dog

Toucan

Cat

Goose

Fox

Hen

Dog

Toucan

Cat

Goose

Fox

Hen

Previous model

Teacher model

for the current task

New model

S
tre

a
m

 o
f u

n
la

b
e

le
d

 d
a

ta

Training dataset

Confidence-based

sampling

Figure 1. We propose to leverage a large stream of unlabeled

data in the wild for class-incremental learning. At each stage, a

confidence-based sampling strategy is applied to build an external

dataset. Under the combination of the labeled training dataset and

the unlabeled external dataset, a teacher model C first learns the

current task, and then the new model M learns both the previous

and the current tasks by distilling the knowledge of P and C.

2. Approach

2.1. Preliminaries: Class-incremental Learning

Formally, let (x, y) ∈ D be a data x and its label y in

a dataset D, and let T be a supervised task mapping x to

y. We denote y ∈ T if y is in the range of T such that

|T | is the number of class labels in T . For the t-th task Tt,
let Dt be the corresponding training dataset, and Dcor

t−1 ⊆
Dt−1 ∪ Dcor

t−2 be a small coreset containing representative

data of previous tasks T1:(t−1) = {T1, . . . , Tt−1}, such that

Dtrn

t = Dt ∪ Dcor

t−1 is the labeled training dataset available

at the t-th stage. Let Mt = {θ, φ1:t} be the set of learnable

parameters of a model, where θ and φ1:t = {φ1, . . . , φt}
indicate shared and task-specific parameters, respectively

(subscription indicates the task index).2

The goal at the t-th stage is to train a model Mt to

perform the current task Tt as well as the previous tasks

T1:(t−1) without task boundaries, i.e., all class labels in T1:t
are candidates at test time. To this end, a small coreset Dcor

t−1

and the previous model Mt−1 are transferred from the pre-

vious stage. We also assume that a large stream of unlabeled

2 If task-specific parameters of multiple tasks are given, logits of all

learned classes are concatenated for the prediction without task boundaries.
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data is accessible, and we would like to sample an external

dataset denoted by Dext

t . We do not assume any correlation

between the stream of unlabeled data and the tasks.

Learning objectives. With a labeled dataset D, a model

M = {θ, φ} learns by minimizing a classification loss:

Lcls(θ, φ;D) =
1

|D|

∑

(x,y)∈D

[− log p(y|x; θ, φ)].

The following distillation loss is useful when an unlabeled

dataset and a reference model Q = {θQ, φQ} is given:

Ldst(θ, φ;Q,D)

=
1

|D|

∑

x∈D

∑

y∈T

[−p(y|x; θQ, φQ) log p(y|x; θ, φ)],

where the probabilities can be smoothed for better distilla-

tion [6]. For confidence calibration, we also consider a con-

fidence loss to make the model confidence-calibrated, such

that its prediction p(y|x) is uniformly distributed if data is

from out-of-distribution (OOD) [5, 10, 11]:

Lcnf(θ, φ;D) =
1

|D||T |

∑

x∈D

∑

y∈T

[− log p(y|x; θ, φ)].

2.2. Global Distillation with 3-step Learning

We propose a novel training method which lever-

ages a large stream of unlabeled external data for class-

incremental learning effectively. Intuitively, the previous

model Pt = Mt−1 can only produce a prediction on the

previous tasks T1:(t−1), such that unlabeled data are not us-

able for learning the current task Tt. To compensate for this,

another teacher model Ct = {θC , φC
t } learns to be special-

ized for Tt by optimizing the following:

min
θC,φC

t

Lcls(θ
C , φC

t ;Dt) + Lcnf(θ
C , φC

t ;D
cor

t−1 ∪ Dext

t ), (1)

where the confidence loss is jointly minimized with the clas-

sification loss to make the model confidence-calibrated for

sampling purpose in Section 2.3. However, we note that Pt

and Ct are not able to distinguish between T1:(t−1) and Tt,
i.e., unlabeled data can only be used to learn either T1:(t−1)

or Tt, not all tasks T1:t at once. To fully leverage unlabeled

data, we define Qt as an ensemble of Pt and Ct: let

pmax = max
y

p(y|x, θP , φP
1:(t−1)),

ymax = argmax
y

p(y|x, θP , φP
1:(t−1)).

Then, the output of Qt can be defined as:

p(y|x, θQ, φQ
1:t) =











pmax if y = ymax
1−pmax−ε
1−pmax

p(y|x, θP , φP
1:(t−1)) elif y ∈ T1:(t−1)

εp(y|x, θC , φC
t ) elif y ∈ Tt,

(2)

such that
∑

y p(y|x, θ
Q, φQ

1:t) = 1. With an assumption

that the expected predicted probability is the same over all

negative classes ∀y /∈ ymax, we get

ε =
(1− pmax)|Tt|

|T1:t| − 1
. (3)

Now, we define the learning objective of our global dis-

tillation (GD) method:

min
θ,φ1:t

Lcls(θ, φ1:t;D
trn

t )

+Ldst(θ, φ1:(t−1);Pt,D
trn

t ∪ Dext

t )

+Ldst(θ, φt; Ct,D
trn

t ∪ Dext

t )

+Ldst(θ, φ1:t;Qt,D
ext

t ). (4)

Finally, to eliminate the bias learned from the imbal-

anced training dataset, we fine-tune the task-specific param-

eters with the same learning objective. Specifically, for each

data in a class k, we normalize the gradient by the portion

of data in the class k in the labeled training dataset.

For coreset management, we build a balanced coreset

by randomly selecting data for each class. We note that

other more sophisticated selection algorithms like herding

[16, 17] do not perform significantly better than random se-

lection, as reported in prior works [1, 19].

2.3. Sampling External Dataset

Learning from a large number of data is expensive and

most of the data in the wild would be irrelevant to the tasks

in interest. To leverage them effectively, we propose to sam-

ple an essential external dataset from a large stream of un-

labeled data. To alleviate catastrophic forgetting, sampling

external data that are expected to be in previous tasks is de-

sired to make the training dataset balanced. Also, to make

the model confidence-calibrated, a certain amount of OOD

data should also be sampled. Thus, at the beginning of each

stage, from a stream of unlabeled data, we randomly sample

unlabeled data as OOD3, and sample most probable data for

each class in previous tasks based on the prediction of P .

3. Experiments

3.1. Experimental Setup

Compared algorithms. Oracle provides an upper bound

of the performance, which stores all training data of pre-

vious tasks and replays them during training. Baseline is

trained without knowledge distillation. Among prior works,

three state-of-the-art methods are compared: learning with-

out forgetting (LwF) [12], distillation and retrospection

(DR) [7], and end-to-end incremental learning (E2EiL) [1].

Datasets. CIFAR-100 [9] and downsampled ImageNet

ILSVRC 2012 [2, 3] are used. For CIFAR-100, similar to

3Since OOD is widely distributed over the data space, randomly sam-

pled data are more useful than the most probable OOD data.
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Table 1. Performance of compared methods on CIFAR-100 and ImageNet. We report the mean and the standard deviation of seven trials

with different random seeds in %. ↑ (↓) indicates that the higher (lower) number is the better.

Dataset CIFAR-100 ImageNet

Task size 5 10 20 5 10 20

Metric ACC (↑) FGT (↓) ACC (↑) FGT (↓) ACC (↑) FGT (↓) ACC (↑) FGT (↓) ACC (↑) FGT (↓) ACC (↑) FGT (↓)

Oracle 78.7 ± 0.8 3.3 ± 0.2 77.7 ± 0.8 3.2 ± 0.2 75.8 ± 0.7 2.9 ± 0.2 67.3 ± 1.5 3.4 ± 0.4 66.2 ± 1.5 3.2 ± 0.5 64.5 ± 1.2 2.8 ± 0.4

Without an external dataset

Baseline 57.6 ± 1.1 20.9 ± 0.5 57.0 ± 1.0 19.7 ± 0.4 56.2 ± 1.1 18.0 ± 0.4 43.6 ± 1.1 23.7 ± 0.4 43.5 ± 1.2 21.7 ± 0.6 44.0 ± 0.8 18.7 ± 0.8

LwF [12] 58.7 ± 1.1 19.3 ± 0.5 59.7 ± 1.1 16.9 ± 0.4 60.3 ± 0.9 14.6 ± 0.4 45.0 ± 1.6 21.6 ± 0.4 46.7 ± 1.0 18.6 ± 0.5 48.1 ± 0.8 15.5 ± 0.5

DR [7] 59.4 ± 1.1 19.6 ± 0.4 61.0 ± 1.1 17.1 ± 0.3 62.1 ± 0.8 14.4 ± 0.4 45.9 ± 1.2 22.1 ± 0.6 48.0 ± 1.1 19.0 ± 0.6 50.1 ± 0.9 15.5 ± 0.6

E2EiL [1] 60.6 ± 1.2 16.5 ± 0.5 62.8 ± 1.0 12.8 ± 0.4 65.3 ± 0.7 8.9 ± 0.2 47.1 ± 1.7 17.9 ± 0.5 50.2 ± 1.1 13.5 ± 0.3 53.5 ± 1.1 9.0 ± 0.3

GD (Ours) 62.4 ± 1.0 15.4 ± 0.4 65.3 ± 0.9 12.1 ± 0.3 67.4 ± 0.9 8.6 ± 0.4 49.4 ± 1.3 16.8 ± 0.4 53.1 ± 1.2 12.9 ± 0.4 55.9 ± 1.0 8.6 ± 0.5

With an external dataset

LwF [12] 60.0 ± 0.8 19.5 ± 0.4 61.3 ± 0.9 17.0 ± 0.4 61.1 ± 1.2 14.7 ± 0.5 46.6 ± 1.1 21.7 ± 0.5 48.6 ± 1.0 18.7 ± 0.5 49.2 ± 0.8 15.9 ± 0.5

DR [7] 60.0 ± 0.9 19.5 ± 0.5 62.5 ± 0.9 16.4 ± 0.3 63.7 ± 1.1 13.4 ± 0.4 46.8 ± 1.2 21.8 ± 0.6 50.0 ± 1.1 18.3 ± 0.5 51.9 ± 1.0 14.6 ± 0.6

E2EiL [1] 61.9 ± 1.0 16.4 ± 0.5 64.5 ± 0.9 12.6 ± 0.4 66.5 ± 1.0 9.0 ± 0.3 48.6 ± 1.3 17.6 ± 0.6 52.2 ± 1.0 13.2 ± 0.3 54.9 ± 0.9 9.1 ± 0.3

GD (Ours) 66.2 ± 0.9 9.6 ± 0.2 68.0 ± 0.9 7.4 ± 0.3 68.9 ± 1.0 5.2 ± 0.3 54.1 ± 1.5 9.7 ± 0.4 56.8 ± 1.4 7.2 ± 0.4 57.9 ± 0.9 5.2 ± 0.4
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Figure 2. Experimental results on CIFAR-100 with an external

data when the task size is 10. We compare (a) the average in-

cremental accuracy, and (b) the average forgetting. We report the

mean of the accuracy of seven trials and the standard deviation.

prior works [1, 17], we shuffle the classes uniformly at ran-

dom and split the classes to build a sequence of tasks. For

ImageNet, we first sample 500 images per 100 randomly

chosen classes for each trial, and then split the classes. Fol-

lowing the prior works, we divide the classes into splits of 5,

10, and 20 classes. To simulate a large stream of unlabeled

data, we take two large datasets: TinyImages [18] with 80M

images and ImageNet 2011 with 14M images. The classes

appeared in CIFAR-100 and ILSVRC 2012 are excluded to

avoid any potential advantage from them. At each stage,

our sampling algorithm gets unlabeled data from them uni-

formly at random to form an external dataset, until the num-

ber of retrieved samples is 1M.

Hyperparameters. Our model is based on wide residual

networks [20] with 16 layers, a widen factor of 2, and a

dropout rate of 0.3. The last fully connected layer is con-

sidered to be a task-specific layer, and whenever a task with

new classes comes in, the layer is extended by adding more

parameters to produce a prediction for the classes. The size

of the coreset is set to 2000. Due to the scalability issue,

the size of the sampled external dataset is set to the size of

the labeled dataset. The temperature for smoothing softmax

probabilities [6] is set to 2 for distillation from P and C and

1 for distillation from Q in Eq. (4).

Evaluation metric. We report the performance of the com-

pared methods in two metrics: the average incremental ac-

curacy (ACC) [1, 17] and the average forgetting (FGT).

ACC measures the overall performance directly by averag-

ing the accuracy, and FGT measures the amount of catas-

trophic forgetting, by averaging the accuracy decay, which

is essentially the negative of the backward transfer [13].

3.2. Evaluation

Comparison of methods. Table 1 and Figure 2 compare

our proposed methods with the state-of-the-art methods.

GD outperforms the methods in prior works, LwF, DR, and

E2EiL, which shows the effectiveness of the proposed loss

function and the 3-step learning scheme. Learning with an

external dataset improves the performance consistently, but

the improvement is more significant in GD. For example,

in the case of ImageNet with a task size of 5, the rela-

tive performance gain by learning with an external dataset

in E2EiL is 2.8% (from 47.1% to 48.6%) while it is 9.4%

(from 49.4% to 54.1%) in GD. Overall, with our proposed

learning scheme and the usage of external data, GD shows

14.9% (from 47.1% to 54.1%) of the relative performance

improvement from E2EiL, which shows the best perfor-

mance among the state-of-the-art methods. In terms of for-

getting, unlike the other methods, GD shows significantly

less forgetting when an external dataset is available: the

amount of forgetting in GD is 45.9% (from 17.9% to 9.7%)

less than E2EiL in the case above.

4. Conclusion

We propose to leverage a large stream of unlabeled data

in the wild for class-incremental learning. The proposed

loss encourages a model to distill the knowledge of the ref-

erence models without task boundaries, and it is particularly

effective when unlabeled data is available. Our 3-step learn-

ing scheme effectively leverages the external dataset sam-

pled with the proposed sampling strategy from the stream

of unlabeled data.
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